Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Behav Pharmacol ; 35(1): 26-35, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085651

RESUMO

Chronic exposure to cocaine is known to have profound effects on the brain, leading to the dysregulation of inflammatory signalling pathways, the activation of microglia, and the manifestation of cognitive and motivational behavioural impairments. The endocannabinoid system has emerged as a potential mediator of cocaine's deleterious effects. In this study, we sought to investigate the therapeutic potential of the cannabinoid CB2 receptor agonist, JWH-133, in mitigating cocaine-induced inflammation and associated motivational behavioural alterations in an in vivo model. Our research uncovered compelling evidence that JWH-133, a selective CB2 receptor agonist, exerts a significant dampening effect on the reinstatement of cocaine-induced conditioned place preference. This effect was accompanied by notable changes in the neurobiological landscape. Specifically, JWH-133 administration was found to upregulate Δ-FOSB expression in the nucleus accumbens (Nac), elevate CX3CL1 levels in both the ventral tegmental area and prefrontal cortex (PFC), and concurrently reduce IL-1ß expression in the PFC and NAc among cocaine-treated animals. These findings highlight the modulatory role of CB2 cannabinoid receptor activation in altering the reward-seeking behaviour induced by cocaine. Moreover, they shed light on the intricate interplay between the endocannabinoid system and cocaine-induced neurobiological changes, paving the way for potential therapeutic interventions targeting CB2 receptors in the context of cocaine addiction and associated behavioural deficits.


Assuntos
Canabinoides , Cocaína , Camundongos , Animais , Endocanabinoides/metabolismo , Receptor CB2 de Canabinoide , Cocaína/farmacologia , Cocaína/metabolismo , Canabinoides/farmacologia , Núcleo Accumbens/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia
3.
Pain ; 164(10): 2253-2264, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171192

RESUMO

ABSTRACT: Exposure to severely stressful events during childhood is associated with poor health outcomes in later life, including chronic pain and substance use disorder. However, the mediators and mechanisms are unclear. We investigated the impact of a well-characterized mouse model of early-life adversity, fragmented maternal care (FC) between postnatal day 2 and 9, on nociception, inflammatory hypersensitivity, and responses to morphine. Male and female mice exposed to FC exhibited prolonged basal thermal withdrawal latencies and decreased mechanical sensitivity. In addition, morphine had reduced potency in mice exposed to FC and their development of tolerance to morphine was accelerated. Quantitative PCR analysis in several brain regions and the spinal cords of juvenile and adult mice revealed an impact of FC on the expression of genes encoding opioid peptide precursors and their receptors. These changes included enhanced abundance of δ opioid receptor transcript in the spinal cord. Acute inflammatory hypersensitivity (induced by hind paw administration of complete Freund's adjuvant) was unaffected by exposure to FC. However, after an initial recovery of mechanical hypersensitivity, there was a reappearance in mice exposed to FC by day 15, which was not seen in control mice. Changes in nociception, morphine responses, and hypersensitivity associated with FC were apparent in males and females but were absent from mice lacking δ receptors or ß-arrestin2. These findings suggest that exposure to early-life adversity in mice enhances δ receptor expression leading to decreased basal sensitivity to noxious stimuli coupled with accelerated morphine tolerance and enhanced vulnerability to persistent inflammatory hypersensitivity.


Assuntos
Morfina , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/efeitos adversos , Hiperalgesia/etiologia , Hiperalgesia/induzido quimicamente , Morfina/efeitos adversos , Dor/induzido quimicamente , Receptores Opioides delta/genética , Estresse Psicológico , Regulação para Cima
4.
J Physiol ; 601(8): 1483-1500, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36859810

RESUMO

Morphine diminishes pain, but its long-term use is compromised by tolerance and hyperalgesia. Studies implicate δ receptors, ß-arrestin2 and Src kinase in tolerance. We examined whether these proteins are also involved in morphine-induced hypersensitivity (MIH). A common pathway for tolerance and hypersensitivity may provide a single target to guide improved analgesic approaches. We examined mechanical sensitivity using automated von Frey in wild-type (WT) and transgenic male and female C57Bl/6 mice before and after hind paw inflammation by complete Freund's adjuvant (CFA). CFA-evoked hypersensitivity ceased on day 7 in WT but persisted for the 15-day testing period in µ-/- . Recovery was delayed until day 13 in δ-/- . We explored the expression of opioid genes in the spinal cord using quantitative RT-PCR. Restoration to basal sensitivity in WT occurred with increased δ expression. By contrast, κ expression was reduced, while µ remained unchanged. Daily morphine reduced hypersensitivity in WT on day 3 compared to controls; however, hypersensitivity recurred on day 9 and beyond. By contrast, WT had no recurrence of hypersensitivity in the absence of daily morphine. We used ß-arrestin2-/- , δ-/- and Src inhibition by dasatinib in WT to establish whether these approaches, which diminish tolerance, also attenuate MIH. While none of these approaches affected CFA-evoked inflammation or acute hypersensitivity, all caused sustained morphine anti-hypersensitivity, abolishing MIH. Like morphine tolerance, MIH in this model requires δ receptors, ß-arrestin2 and Src activity. Our findings suggest that MIH is caused by a tolerance-induced reduction in endogenous opioid signalling. KEY POINTS: Morphine is effective for treating severe acute pain, but tolerance and hypersensitivity often develop during its use in treating chronic pain. It is unclear whether these detrimental effects share similar mechanisms; if so, it might be possible to develop a single approach to minimise both phenomena. Mice deficient in µ receptors, δ receptors or ß-arrestin2 and wild type mice treated with the Src inhibitor dasatinib exhibit negligible morphine tolerance. We show that these same approaches also prevent the development of morphine-induced hypersensitivity during persistent inflammation. This knowledge identifies strategies, such as the use of Src inhibitors, which may mitigate tolerance and morphine induced hyperalgesia.


Assuntos
Hiperalgesia , Morfina , Camundongos , Masculino , Feminino , Animais , Morfina/efeitos adversos , Hiperalgesia/induzido quimicamente , Analgésicos Opioides/efeitos adversos , Receptores Opioides delta/metabolismo , beta-Arrestina 1/metabolismo , Dasatinibe , Dor , Proteína Tirosina Quinase CSK/metabolismo , Receptores Opioides mu/metabolismo , Camundongos Endogâmicos C57BL , Inflamação
5.
Proc Natl Acad Sci U S A ; 120(7): e2207887120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745790

RESUMO

Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Ratos , Humanos , Coelhos , Animais , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Lipoilação , Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cálcio da Dieta , Mamíferos/metabolismo
6.
Pain Rep ; 8(2): e1067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818647

RESUMO

Introduction: The World Health Organization recognizes chronic pain as a global public health concern; however, there is a bias towards research conducted in relatively affluent nations. There is a dearth of large-scale epidemiological studies in Nepal using rigorously validated, cross-culturally adapted instruments. Objectives: The aim of this study was to examine the prevalence of both chronic pain and chronic pain of predominantly neuropathic origin and their associations with a range of sociodemographic and psychosocial characteristics. Methods: We conducted a cross-sectional study of adults (≥18 years) in all households in Ranipani, Baluwa Village Development Committee, Nepal. All adults (n = 887) were approached, and those consenting, who met the inclusion criteria (n = 520, 58.6%), participated. Questionnaires validated in Nepali were used to examine several constructs: demographics; chronic pain; neuropathic pain; pain catastrophizing; resilience, pain intensity; pain interference; sleep disturbance; and depression. Results: The point prevalence of chronic pain was 53.3% (n = 277). The point prevalence of chronic pain of predominantly neuropathic origin was 12.7% (n = 66). Chronic pain was associated with female gender, older age, and manual labour occupations. Using standardized scoring techniques, compared with available population estimates from other countries, those with chronic pain were associated with lower pain intensity and resilience scores and higher pain catastrophizing, pain interference, and depression scores. Conclusion: These findings are broadly comparable to epidemiological studies from other countries, and these indicate areas for targeting interventions (eg, occupational and mental health). For comparison, more data are needed, from larger population samples in this region.

7.
Reg Anesth Pain Med ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35878962

RESUMO

Despite advances in needle positioning techniques, nerve damage still occurs after regional anesthesia. Recognized causes include local anesthetic toxicity, subperineural injection, high subepineural fluid injection pressures and subepineural hematoma after forceful needle--nerve contact.We hypothesize that subperineural injection is still possible, but less likely to be the cause of nerve damage because needle penetration of fascicles and mechanical damage is difficult to achieve. High-resolution (75 µm) 40 MHz micro-ultrasound images of pig axillae show short-bevelled 22 g, 0.7 mm wide block needles that are three times larger than the average fascicle. Fascicular bundles are extremely difficult to puncture because they spin away on needle contact. Histology from fresh cadavers after supposed intrafascicular injection shows fluid spread within perineurium and intrafascicular perineural septae, but no breach of endoneurium or axons.We propose that mechanotransduction, the cellular changes that occur in response to force, contributes to nerve damage. Piezo ion channel proteins transduce force into electrical activity by rapid entry of cations into cells. Excessive Ca2+ influx into cells has the potential to inhibit nerve regeneration. Cellular changes include regulation of gene expression. The forces associated with purposeful needle insertion are generally unknown. Our experiments in the soft embalmed Thiel cadaver showed a lognormal range of forces between 0.6 N and 16.8 N on epineural penetration.We hypothesize that forceful needle injury may cause nerve damage by activation of Piezo receptors and release of intracellular Ca2.

8.
J Pain ; 23(3): 424-433, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34583020

RESUMO

Neuropathic pain research and clinical care is limited in low- and middle-income countries with high prevalence of chronic pain such as Nepal. We translated and cross-culturally adapted the Self-report version of the Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS)-a commonly used, reliable and valid instrument to screen for pain of predominantly neuropathic origin (POPNO)-into Nepali (S-LANSS-NP) and validated it using recommended guidelines. We recruited 30 patients with chronic pain in an outpatient setting for cognitive debriefing and recruited 287 individuals with chronic pain via door-to-door interviews for validation. For known-group validity, we hypothesized that the POPNO group would report significantly more pain intensity and pain interference than the chronic pain group without POPNO using a cut-off score of ≥10/24. The S-LANSS-NP was comprehensible based on the ease of understanding the questionnaire and lack of missing responses. The validation sample consisted of predominantly low-levels of literacy (81% had 5 years or less education); 23% were classified as having POPNO. Internal consistency was good (alpha = .80). Known-group validity was supported (chronic pain with POPNO reported significantly greater pain intensity than those without). The S-LANSS-NP is a comprehensible, unidimensional, internally consistent, and valid instrument to screen POPNO in individuals with chronic pain with predominantly low-levels of literacy for clinical and research use. PERSPECTIVE: This paper shows that the Nepali version of the S-LANSS is comprehensible, reliable and valid in adults with chronic pain and predominantly low-levels of literacy in rural Nepal. The study could potentially develop research and clinical care of neuropathic pain in this resource-limited setting where chronic pain is a significant problem.


Assuntos
Dor Crônica , Neuralgia , Adulto , Dor Crônica/diagnóstico , Humanos , Alfabetização , Neuralgia/diagnóstico , Reprodutibilidade dos Testes , Autorrelato , Inquéritos e Questionários
9.
iScience ; 24(4): 102270, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817575

RESUMO

Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.

10.
Br J Pharmacol ; 178(8): 1855-1868, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555037

RESUMO

BACKGROUND AND PURPOSE: ß-Arrestin2 recruitment to µ-receptors may contribute to the development of opioid side effects. This possibility led to the development of TRV130 and PZM21, opioids reportedly biased against ß-arrestin2 recruitment in favour of G-protein signalling. However, low efficacy ß-arrestin2 recruitment by TRV130 and PZM21 may simply reflect partial agonism overlooked due to overexpression of µ-receptors. EXPERIMENTAL APPROACH: Efficacies and apparent potencies of DAMGO, morphine, PZM21 and TRV130 as stimulators of ß-arrestin2 recruitment and inhibitors of cAMP accumulation were assessed in CHO cells stably expressing µ-receptors. Receptor availability was depleted through prior exposure of cells to the irreversible antagonist, ß-FNA. We also examined whether µ-receptor availability influences TRV130 anti-nociception and/or tolerance using the tail withdrawal assay in wild-type C57BL/6 and µ+/- mice. KEY RESULTS: Morphine, PZM21 and TRV130 were partial agonists in the ß-arrestin2 recruitment assay. Only TRV130 exhibited partial agonism in the cAMP assay. Exposure to ß-FNA to reduce µ-receptor availability further limited the efficacy of TRV130 and revealed morphine and PZM21 to be partial agonists. Despite having partial efficacy in vitro, TRV130 caused potent anti-nociception (ED50 : 0.33 mg·kg-1 ) in wild-type mice, without tolerance after daily administration for 10 days. TRV130 caused similar anti-nociception in µ+/- mice, with marked tolerance on day 4 of injections. CONCLUSION AND IMPLICATIONS: Our findings emphasise the importance of receptor reserve when characterising µ-receptor agonists. Reduced receptor availability reveals that TRV130 is a partial agonist capable of tolerance, despite having limited efficacy for ß-arrestin2 recruitment to the µ-receptor.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Animais , Cricetinae , Cricetulus , Tolerância a Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Compostos de Espiro , Tiofenos
11.
IUPHAR BPS Guide Pharm CITE ; 2021(3)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35005623

RESUMO

The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three ß, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, ß2-, ß3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, ß- and γ-subunits with the likely stoichiometry 2α.2ß.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and ß - subunit variant. The α1ß2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2ß3γ2 and α3ß3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the ß1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the ß+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/ß- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1ß2γ2, α1ßγ2, α3ßγ2, α4ßγ2, α4ß2δ, α4ß3δ, α5ßγ2, α6ßγ2, α6ß2δ, α6ß3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via ß-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].

12.
Hum Mol Genet ; 29(8): 1396-1404, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32246137

RESUMO

BACKGROUND: Common types of musculoskeletal conditions include pain in the neck and shoulder areas. This study seeks to identify the genetic variants associated with neck or shoulder pain based on a genome-wide association approach using 203 309 subjects from the UK Biobank cohort and look for replication evidence from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and TwinsUK. METHODS: A genome-wide association study was performed adjusting for age, sex, BMI and nine population principal components. Significant and independent genetic variants were then sent to GS:SFHS and TwinsUK for replication. RESULTS: We identified three genetic loci that were associated with neck or shoulder pain in the UK Biobank samples. The most significant locus was in an intergenic region in chromosome 17, rs12453010, having P = 1.66 × 10-11. The second most significant locus was located in the FOXP2 gene in chromosome 7 with P = 2.38 × 10-10 for rs34291892. The third locus was located in the LINC01572 gene in chromosome 16 with P = 4.50 × 10-8 for rs62053992. In the replication stage, among four significant and independent genetic variants, rs2049604 in the FOXP2 gene and rs62053992 in the LINC01572 gene were weakly replicated in GS:SFHS (P = 0.0240 and P = 0.0202, respectively). CONCLUSIONS: We have identified three loci associated with neck or shoulder pain in the UK Biobank cohort, two of which were weakly supported in a replication cohort. Further evidence is needed to confirm their roles in neck or shoulder pain.


Assuntos
Fatores de Transcrição Forkhead/genética , Cervicalgia/genética , RNA Longo não Codificante/genética , Dor de Ombro/genética , Bancos de Espécimes Biológicos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Cervicalgia/epidemiologia , Cervicalgia/patologia , Polimorfismo de Nucleotídeo Único/genética , Dor de Ombro/epidemiologia , Dor de Ombro/patologia , Reino Unido/epidemiologia , População Branca/genética
13.
Br J Pharmacol ; 177(15): 3436-3448, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32246840

RESUMO

BACKGROUND AND PURPOSE: A fluorinated derivative (2F-MT-45) of the synthetic µ-opioid receptor agonist MT-45 (1-cyclohexyl-4-(1,2-diphenylethyl)piperazine) was recently identified in a seized illicit tablet. While MT-45 is a Class A drug, banned in a number of countries, nothing is known about the pharmacology of 2F-MT-45. This study compares the pharmacology of MT-45, its fluorinated derivatives and two of its metabolites. EXPERIMENTAL APPROACH: We used a ß-arrestin2 recruitment assay in CHO cells stably expressing µ receptors to quantify the apparent potencies and efficacies of known (MT-45, morphine, fentanyl and DAMGO) and potential agonists. In addition, the GloSensor protein was transiently expressed to quantify changes in cAMP levels. We measured Ca2+ to investigate whether MT-45 and its metabolites have effects on GluN1/N2A NMDA receptors stably expressed in Ltk- cells. KEY RESULTS: The fluorinated MT-45 derivatives have higher apparent potencies (2F-MT-45: 42 nM) than MT-45 (1.3 µM) for inhibition of cAMP accumulation and ß-arrestin2 recruitment (2F-MT-45: 196 nM; MT-45: 23.1 µM). While MT-45 and 2F-MT-45 are poor recruiters of ß-arrestin2, they have similar efficacies for reducing cAMP levels as DAMGO. Two MT-45 metabolites displayed negligible potencies as µ receptor agonists, but one, 1,2-diphenylethylpiperazine, inhibited the NMDA receptor with an IC50 of 29 µM. CONCLUSION AND IMPLICATIONS: Fluorinated derivatives of MT-45 are potent µ receptor agonists and this may pose a danger to illicit opioid users. Inhibition of NMDA receptors by a metabolite of MT-45 may contribute to the reported dissociative effects.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Animais , Cricetinae , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Piperazina , Piperazinas
14.
Chembiochem ; 21(10): 1526-1533, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859406

RESUMO

Bicuculline, a valued chemical tool in neurosciences research, is a competitive antagonist of specific GABAA receptors and affects other pentameric ligand-gated ion channels including the glycine, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors. We used a fluorescence-quenching assay and isothermal titration calorimetry to record low-micromolar dissociation constants for N-methylbicuculline interacting with acetylcholine-binding protein and an engineered version called glycine-binding protein (GBP), which provides a surrogate for the heteromeric interface of the extracellular domain of the glycine receptor (GlyR). The 2.4 Šresolution crystal structure of the GBP:N-methylbicuculline complex, sequence and structural alignments reveal similarities and differences between GlyR and the GABAA receptor-bicuculline interactions. N-methylbicuculline displays a similar conformation in different structures, but adopts distinct orientations enforced by interactions and steric blocks with key residues and plasticity in the binding sites. These features explain the promiscuous activity of bicuculline against the principal inhibitory pentameric ligand-gated ion channels in the CNS.


Assuntos
Bicuculina/análogos & derivados , Ativação do Canal Iônico , Receptores de GABA-A/química , Receptores de Glicina/antagonistas & inibidores , Sequência de Aminoácidos , Bicuculina/química , Bicuculina/farmacologia , Sítios de Ligação , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência
15.
IUCrJ ; 6(Pt 6): 1014-1023, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709057

RESUMO

Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/ß glycine receptor.

16.
Cancers (Basel) ; 11(5)2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035321

RESUMO

The question of whether anesthetic, analgesic or other perioperative intervention during cancer resection surgery might influence long-term oncologic outcomes has generated much attention over the past 13 years. A wealth of experimental and observational clinical data have been published, but the results of prospective, randomized clinical trials are awaited. The European Union supports a pan-European network of researchers, clinicians and industry partners engaged in this question (COST Action 15204: Euro-Periscope). In this narrative review, members of the Euro-Periscope network briefly summarize the current state of evidence pertaining to the potential effects of the most commonly deployed anesthetic and analgesic techniques and other non-surgical interventions during cancer resection surgery on tumor recurrence or metastasis.

17.
Lancet ; 393(10180): 1558-1568, 2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30983591

RESUMO

Opioids are a mainstay of acute pain management but can have many adverse effects, contributing to problematic long-term use. Opioid tolerance (increased dose needed for analgesia) and opioid-induced hyperalgesia (paradoxical increase in pain with opioid administration) can contribute to both poorly controlled pain and dose escalation. Hyperalgesia is particularly problematic as further opioid prescribing is largely futile. The mechanisms of opioid tolerance and hyperalgesia are complex, involving µ opioid receptor signalling pathways that offer opportunities for novel analgesic alternatives. The intracellular scaffold protein ß-arrestin-2 is implicated in tolerance, hyperalgesia, and other opioid side-effects. Development of agonists biased against recruitment of ß-arrestin-2 could provide analgesic efficacy with fewer side-effects. Alternative approaches include inhibition of peripheral µ opioid receptors and blockade of downstream signalling mechanisms, such as the non-receptor tyrosine kinase Src or N-methyl-D-aspartate receptors. Furthermore, it is prudent to use multimodal analgesic regimens to reduce reliance on opioids during the perioperative period. In the third paper in this Series we focus on clinical and mechanism-based understanding of tolerance and opioid-induced hyperalgesia, and discuss current and future strategies for pain management.


Assuntos
Analgésicos Opioides/administração & dosagem , Dor Pós-Operatória/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Tolerância a Medicamentos , Humanos , Hiperalgesia , Assistência Perioperatória
18.
Forensic Toxicol ; 37(1): 1-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636980

RESUMO

PURPOSE: A detailed review on the chemistry and pharmacology of non-fentanil novel synthetic opioid receptor agonists, particularly N-substituted benzamides and acetamides (known colloquially as U-drugs) and 4-aminocyclohexanols, developed at the Upjohn Company in the 1970s and 1980s is presented. METHOD: Peer-reviewed literature, patents, professional literature, data from international early warning systems and drug user fora discussion threads have been used to track their emergence as substances of abuse. RESULTS: In terms of impact on drug markets, prevalence and harm, the most significant compound of this class to date has been U-47700 (trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide), reported by users to give short-lasting euphoric effects and a desire to re-dose. Since U-47700 was internationally controlled in 2017, a range of related compounds with similar chemical structures, adapted from the original patented compounds, have appeared on the illicit drugs market. Interest in a structurally unrelated opioid developed by the Upjohn Company and now known as BDPC/bromadol appears to be increasing and should be closely monitored. CONCLUSIONS: International early warning systems are an essential part of tracking emerging psychoactive substances and allow responsive action to be taken to facilitate the gathering of relevant data for detailed risk assessments. Pre-emptive research on the most likely compounds to emerge next, so providing drug metabolism and pharmacokinetic data to ensure that new substances are detected early in toxicological samples is recommended. As these compounds are chiral compounds and stereochemistry has a large effect on their potency, it is recommended that detection methods consider the determination of configuration.

19.
J Biol Chem ; 294(7): 2375-2385, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545943

RESUMO

GABAA receptors (GABAARs) are pentameric ligand-gated ion channels that mediate synaptic inhibition throughout the central nervous system. The α1ß2γ2 receptor is the major subtype in the brain; GABA binds at the ß2(+)α1(-) interface. The structure of the homomeric ß3 GABAAR, which is not activated by GABA, has been solved. Recently, four additional heteromeric structures were reported, highlighting key residues required for agonist binding. Here, we used a protein engineering method, taking advantage of knowledge of the key binding residues, to create a ß3(+)α1(-) heteromeric interface in the homomeric human ß3 GABAAR that enables GABA-mediated activation. Substitutions were made in the complementary side of the orthosteric binding site in loop D (Y87F and Q89R), loop E (G152T), and loop G (N66D and A70T). The Q89R and G152T combination enabled low-potency activation by GABA and potentiation by propofol but impaired direct activation by higher propofol concentrations. At higher concentrations, GABA inhibited gating of ß3 GABAAR variants containing Y87F, Q89R, and G152T. Reversion of Phe87 to tyrosine abolished GABA's inhibitory effect and partially recovered direct activation by propofol. This tyrosine is conserved in homomeric GABAARs and in the Erwinia chrysanthemi ligand-gated ion channel and may be essential for the absence of an inhibitory effect of GABA on homomeric channels. This work demonstrated that only two substitutions, Q89R and G152T, in ß3 GABAAR are sufficient to reconstitute GABA-mediated activation and suggests that Tyr87 prevents inhibitory effects of GABA.


Assuntos
Ativação do Canal Iônico , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Receptores de GABA-B , Substituição de Aminoácidos , Domínio Catalítico , Dickeya chrysanthemi/química , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Células HEK293 , Humanos , Propofol/farmacologia , Receptores de GABA-B/química , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo
20.
Anesth Analg ; 127(3): 650-660, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29958221

RESUMO

BACKGROUND: Cardiotoxic effects of local anesthetics (LAs) involve inhibition of NaV1.5 voltage-gated Na channels. Metastatic breast and colon cancer cells also express NaV1.5, predominantly the neonatal splice variant (nNaV1.5) and their inhibition by LAs reduces invasion and migration. It may be advantageous to target cancer cells while sparing cardiac function through selective blockade of nNaV1.5 and/or by preferentially affecting inactivated NaV1.5, which predominate in cancer cells. We tested the hypotheses that lidocaine and levobupivacaine differentially affect (1) adult (aNaV1.5) and nNaV1.5 and (2) the resting and inactivated states of NaV1.5. METHODS: The whole-cell voltage-clamp technique was used to evaluate the actions of lidocaine and levobupivacaine on recombinant NaV1.5 channels expressed in HEK-293 cells. Cells were transiently transfected with cDNAs encoding either aNaV1.5 or nNaV1.5. Voltage protocols were applied to determine depolarizing potentials that either activated or inactivated 50% of maximum conductance (V½ activation and V½ inactivation, respectively). RESULTS: Lidocaine and levobupivacaine potently inhibited aNaV1.5 (IC50 mean [SD]: 20 [22] and 1 [0.6] µM, respectively) and nNaV1.5 (IC50 mean [SD]: 17 [10] and 3 [1.6] µM, respectively) at a holding potential of -80 mV. IC50s differed significantly between lidocaine and levobupivacaine with no influence of splice variant. Levobupivacaine induced a statistically significant depolarizing shift in the V½ activation for aNaV1.5 (mean [SD] from -32 [4.6] mV to -26 [8.1] mV) but had no effect on the voltage dependence of activation of nNaV1.5. Lidocaine had no effect on V½ activation of either variant but caused a significantly greater depression of maximum current mediated by nNaV1.5 compared to aNaV1.5. Similar statistically significant shifts in the V½ inactivation (approximately -10 mV) occurred for both LAs and NaV1.5 variants. Levobupivacaine (1 µM) caused a significantly greater slowing of recovery from inactivation of both variants than did lidocaine (10 µM). Both LAs caused approximately 50% tonic inhibition of aNaV1.5 or nNaV1.5 when holding at -80 mV. Neither LA caused tonic block at a holding potential of either -90 or -120 mV, voltages at which there was little steady-state inactivation. Higher concentrations of either lidocaine (300 µM) or levobupivacaine (100 µM) caused significantly more tonic block at -120 mV. CONCLUSIONS: These data demonstrate that low concentrations of the LAs exhibit inactivation-dependent block of NaV1.5, which may provide a rationale for their use to safely inhibit migration and invasion by metastatic cancer cells without cardiotoxicity.


Assuntos
Anestésicos Locais/farmacologia , Levobupivacaína/farmacologia , Lidocaína/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Adulto , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Recém-Nascido , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...